
Application Execution Steering Using On-the-fly
Performance Prediction1

D.J. Kerbyson, E. Papaefstathiou, G.R. Nudd

High Performance Architectures Group,
University of Warwick,

Coventry, CV4 7AL, UK
email {djke,stathis}@dcs.warwick.ac.uk

Abstract

The execution of an application on a high performance system requires parameters concerning
the problem in hand, and those that determine the system mapping, to be specified by a user.
The system parameters are typically used to minimise the execution time. However, by the
coupling of a performance model with an application, system parameters can be determined
without user intervention. In the work presented here, a novel performance prediction system
has been used to provide suitable performance models which can determine application
mapping parameters, code execution decisions, and system choices on-the-fly. An example
compact application of a convolution is used to illustrate the approach for automatically
choosing the actual code to be executed, and the number of workstations in a cluster to be
utilised. The performance prediction system is shown to have a reasonable accuracy
(approximately 10% error), with a rapid evaluation time (typically < 2s).

Keywords: High Performance Computing, Performance Prediction, On-the-fly decision
making, application steering.

1 Introduction

An underlying goal in the use of high performance systems is to apply the often quite
complex systems to achieve rapid application execution times. The analysis of
performance is currently an active research area. Traditionally performance
prediction has been used prior to application implementation to explore alternative
implementations e.g. different parallelisations, and also in analysing existing codes in
order to access the impact of increasing resources, and also to identify bottlenecks.

In the novel system utilised here, the traditional use of performance prediction is
extended to encapsulate the full software cycle. It incorporates both pre- and post
implementation analysis but also importantly it can be used to aid the actual execution
of an application. Thus, utilising performance prediction to effectively steer the
application execution onto an available system at run-time in an efficient manner. The
prediction system provides detailed information on the expected application execution
which is dependent on application parameters as well as current system status - which
can only be resolved at run-time.

1 in High Performance Computing and Networking, Lecture Notes in Computer Science, Vol.
1401, Springer-Verlag, April 1998, pp. 718-727.

Several other systems have been proposed which incorporate performance
information to aid application execution e.g. [2,3,10] which have been applied for
scheduling in Meta-computing systems. However, the performance information is
usually extracted from previous timing information, and is not based directly on
prediction. Thus, they have limited use for the application steering on changes in
system configuration, and also in changing parallelisation methods. Performance
prediction has not been used in such situations to date due mainly to in-accurate
modelling of real-systems, and also to a slow speed of evaluation. The system used
here attempts to tackle both of these issues which results in accurate performance
models which can be evaluated quickly.

This paper concentrates on the use of on-the-fly use of performance prediction, the
concepts of which are described in Section 2. An overview of the prediction system
(PACE), which is under development at Warwick, is described in Section 3. This
system enables a performance model to be incorporated into an application which can
be used to steer its execution. The system enables rapid performance predictions to be
calculated. A compact application containing a convolution kernel is used to illustrate
the approach for determining system mapping, and calculation method, in Section 4.

2 On-the-fly Performance Prediction

There are a number of decisions that a user has to make in order to execute an
application. These are traditionally specified through the use of two types of
application parameters, which can be broadly classed into two categories:

Problem parameters include those that specify the format of the data to be processed
e.g. data size, and also the type of result required such as accuracy in a numerical
calculation, or the number of iterations required in an iterative solution.

System parameters specify how a target system will be utilised, e.g. in specifying the
number of processors to be used in a high performance system, and possibly also
to specify the platform to be utilised when several are available.

The problem parameters need to be specified by the user (always) and depend on the
calculation required. However, the system parameters are used to determine how the
application will be mapped onto the available system, and are normally used to reduce
execution time. By coupling a suitable performance model into the application,
predictions can be made to determine these system parameters using criteria such as
requiring a minimum execution time. These on-the-fly decisions can be made with
negligible overhead in comparison to the total application execution time if the
performance model is rapid in its evaluation. Figure 1 illustrates both a user directed
execution of an application and a performance directed approach.

For example, when determining the number of processors to be used in the
application execution, a performance model can be used to evaluate a best apriori
estimate based on the application and system performance characteristics. However,
in a user-directed approach, the number of processors specified by the user may

naively be the maximum available or at best use pre-acquired knowledge from
previous application runs but not necessarily the optimum. Thus, the performance
model replaces what is quite often an ad-hoc decision procedure.

A
pp

lic
at

io
n

C
od

e

System

{ Problem,
 System }

User
Parameters

Performance
Model

{ System
 } System

User
Parameters

{ Problem }

A
pp

lic
at

io
n

C
od

e

(a) User directed approach (b) Performance directed approach
Figure 1 - Execution of an application using problem and system parameters

The use of the performance model is not limited to just specifying the number of
processors to be used. Consider the situation depicted in Figure 2 where an
application has two methods of implementation (perhaps two ways in which a
numerical solution can be calculated). In addition, two systems are available for its
execution. In this scenario, the user specifies the problem parameters, but also decides
on the code to be used and the target system along with relevant system parameters.

The use of a suitable performance model in this example can determine the code to be
executed, on which target system, along with relevant system parameters, based on
achieving the minimum execution time. Thus, the user need only specify the problem
parameters, with the performance model directing the application execution. Figure 3
illustrates this situation, and shows the chosen code and system (solid arrows), and
other available choices (dotted arrows).

C
od

e
2

System 1

C
od

e
1

System 2

{ Problem,
 System }

?

?

?

Implementation Choice System Choice

User
Parameters

? = User decision

Figure 2 - User directed execution of an application having multiple implementations and
available systems.

System 1

System 2

User
Parameters

C
od

e
1

C
od

e
2

{ System
 }

{ Problem }

Single Executable

Performance
Model

Figure 3 - Performance directed execution of an application with multiple implementations and
available systems.

The performance model can be used to automatically determine a number of
parameters based on a performance criteria, including:

Mapping: including the number of processors to be used
Implementation: method of solution when several are available, or choice of

implementation if several are available (e.g. different parallelisations)
System choice: when multiple systems are available

In addition individual performance models can be used collectively within a task
scheduling environment in which a scheduler is responsible for maintaining useful
activity on system resources. The scheduling process is enhanced by use of predicted
execution times, and mapping information from each task. Such a system is currently
being explored using a Genetic Algorithm for the Scheduler implementation.

The decisions made by the performance model require a number of separate scenarios
to be evaluated. Each scenario is a function of the mapping, the implementation, and
the available systems. The best scenario is taken to be that which results in a
minimum predicted execution time. The total number of scenarios required to be
evaluated is a product of the number of mappings, number of implementations, and
number of systems. Thus, rapid performance model evaluation time is required.

3 The PACE Performance Prediction System

PACE (Performance Analysis and Characterisation Environment) is a performance
prediction toolset suitable for a non-performance expert [6,7]. PACE supports the
development of performance prediction models for sequential and parallel
applications running on high performance systems. It is based on a layered

characterisation methodology [8], and is an analytical based approach that organises a
performance model into three separate layers: an application layer (includes the
computation parts), a hardware layer (includes hardware models), and a
parallelisation layer (includes communication patterns).

PACE supports the entire software lifecycle including development, execution, and
post-mortem performance analysis. A full description of PACE is out of the scope of
this paper [6,7]. However, the PACE components utilised for the on-the-fly prediction
are shown in Figure 4.

Application
Application

Characterisation
Tool

Parallelisation
Layer

Application
Layer

PACE Script

Hardware Models

Evaluation Engine

Application Model

Hardware
Layer 1

Hardware
Layer n

Pre-defined Hardware Models

Compilation

+

+User

Performance
Stub

Application
+

Figure 4 - Constructing a Performance Stub using PACE

The main part of PACE is a special purpose performance language which describe the
control flow of the application, the computational resource requirements, and the
parallelisation communication patterns. The language scripts can be produced either
manually by the user, or by using tool support within PACE. The scripts are then
converted into a performance model by the PACE compiler. The output of the
compiler is an executable performance stub that includes: the application models, pre-
defined hardware models, and an evaluation engine to produce performance
predictions.

In the process of producing a performance model for on-the-fly steering, it is assumed
that the parallel application source code is available. PACE includes an Application
Characterisation Tool (ACT) that aids the conversion of source code into PACE
scripts via the Stanford Intermediate Format (SUIF) [5]. ACT performs a static
analysis of the code to produce the control flow of the application, operation counts in
terms of high level language operations (C or FORTRAN) [9], and also the
communication patterns. This is a semi-automated process as ACT requires user

intervention to resolve dynamic constructs (e.g. data dependent branching
probabilities and loop iteration counts).

The PACE scripts when compiled, allow linkages to the application code. The user
can modify the application code to utilise the performance model including the setting
of problem sizes, system configuration parameters and also the invocation of the
model for on-the-fly steering.

4 Application Case Study

Incorporating a performance stub (from PACE) to enable on-the-fly performance
prediction is illustrated below for an example compact image processing convolution
application which is common in many computationally demanding applications (e.g.
Image microscopy [1]). It also has multiple methods which can be used to calculate
the resultant data. Thus, when a high performance system is available, both the
number of resources, and the calculation method have to be decided upon solely by
the means of the performance stub. The choice of system and calculation is
determined using both the user specifiable problem parameters, and the knowledge of
the currently available resources.

4.1 Application description

A two-dimensional convolution operation can be expressed as: F(i,j) = W * I(i,j)
where I() is the input image, F() the output image, ’*’ is the convolution operator, W is
the convolution weighting function (kernel), and (i, j) indicates the data element. Each
output element is a function of a windowed region of the input data weighted by the
kernel. The two-dimensional convolution can be written as:

F(i, j) = W(p,q)* I(i − p, j − q)

q = − S

S

∑
p = − R

R

∑

where R and S define the size of the rectangular kernel.

The convolution can be calculated either in the spatial domain or in the frequency
domain. A spatial convolution is simply a set of multiply-accumulate operations with
sequential complexity proportional to M2N2 (where N2 is the size of the input image,
and M2 is an assumed square kernel). A convolution in the frequency domain requires
the transformation of the input image, and kernel, using a Fast Fourier Transform
(FFT) followed by a point-wise multiplication. The sequential complexity of this
calculation is proportional to N3log2N (due to the two dimensional FFT) and is
independent of kernel size. The choice of processing is shown in Figure 5.

The size of the image ranges upwards from 2562 pixels, and the convolution kernel
considered ranges upwards from 132 elements. A typical processing scenario may be
on a 10242 image using a 312 convolution kernel.

?
{ Image Size,
 Filter Size,
 #Processors }

Image

Kernel

FFT

FFT
FFT-1*

Convolution

Result

Image

Kernel

Figure 5 - The algorithmic choice available in the convolution operation.

Associated with the choice of processing is the mapping onto the available resources.
In this example, it is assumed that a cluster of 32 Sun SparcStations are available for
use as a parallel resource, using the PVM message passing interface [4].

4.2 Model Validation

A performance stub was constructed using PACE for both forms of convolution
calculation. A validation procedure was carried out that samples the correctness of the
model for a number of problem sizes and processor configurations. A comparison of
the measurements from the machines in the Sun Workstation Cluster, and the
predictions from the performance model is shown in Tables 1 and 2. It should be
noted that the execution time for the frequency domain calculation is independent of
the convolution kernel size.

Number of Processors
2 4 8 16

Image Filter Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred.
256 15 30.31 29.73 17.51 15.29 9.68 8.21 6.55 4.96

31 120.23 125.54 62.56 63.57 32.44 32.72 18.76 17.59
512 15 121.46 117.70 64.11 59.53 35.55 30.58 22.78 16.4

31 561.05 540.18 254.05 251.51 136.31 127.32 68.94 65.51
1024 15 484.58 469.38 249.41 236.15 137.24 119.67 79.84 61.73

31 2010.2 1997.7 1023.9 1001.8 518.54 504.00 269.10 255.38

Table 1 - Comparison of Measurements and Predictions for the spatial convolution (sec).

Number of Processors
2 4 8 16

Image Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred.
256 35.78 45.30 44.97 50.67 58.24 60.18 70.43 64.59
512 122.35 123.20 134.44 144.70 147.43 159.33 173.36 177.87
1024 841.54 909.85 823.10 780.67 845.76 822.77 870.76 847.89

Table 2 - Comparison of Measurements and Predictions for the frequency convolution (sec)

The comparisons indicate that the PACE performance stub conforms to the
measurements within an acceptable error bound (typically < 10%). The system is
assumed to be quiet during the measurement period and hence the performance model
is valid for use during a quiet period on the target system. Incorporation of dynamic
system loading into the PACE performance models, and its effects on the execution
time, is currently in progress.

4.3 Use of the Performance stub

A single application executable was formed by the linking of both forms of the
convolution, and the performance stub. The performance stub was thus used to direct
the execution of the application both in terms of the choice of the calculation method,
and also in the choice of the mapping onto the available system.

A summary of the use of the performance stub is shown in the four graphs in Figure
6. The user specifiable problem parameters are shown on the axis of the graphs, and
the parameters determined by the model are shown as discrete numeric values
(number of processors), and by shading (grey indicates a spatial convolution, and
white indicates a frequency convolution). The four graphs differ only in the assumed
size of the available system (either 4, 8, 16, or 32 SUN SparcStation 2’s in this
analysis).

It can be seen, from Figure 6, that the spatial convolution method is chosen over the
frequency method for small filter sizes across the range in image sizes and available
systems. Indeed, the spatial method scales readily on a parallel system, and becomes
the preferred method as both the system size increases. The frequency method is
preferable for larger kernel sizes on smaller system sizes (due to communication cost
scaling with the number of processors).

It should be noted that when the performance stub is used on-the-fly, only a limited
number of different scenarios need be evaluated to determine the mapping and
algorithm choice. The number of different scenarios is simply a multiple of the
number of algorithmic choices, and the number of system configurations possible.

The advantage in using performance stubs on-the-fly is clear in that the user no longer
needs to be concerned with the system use, but instead these decisions are made using
information available within the model. However, there is a cost of using the
performance model which can be quantified in terms of the additional time required
to provide the decision making procedure, and also its effect in the increase of
executable size. The additional time is small - measured to be less than 2 seconds for
all scenarios depicted in the results above thus adding very little perturbation to the
total application execution time. The executable size is constituted from the two
different calculation forms, and the performance model. This is larger than an
individual method’s executable but does not effect overall processing time (other than
in initial loading).

2562 5122 7682 10242 12802 15362 17922 20482

13
2

19
2

25
2

31
2

37
2

43
2

49
2

55
2

Image Size

K
er

ne
l S

iz
e

2562 5122 7682 10242 12802 15362 17922 20482

13
2

19
2

25
2

31
2

37
2

43
2

49
2

55
2

Image Size

K
er

ne
l S

iz
e

4

4

4

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

8

8

8

8

8

2

2

2

8

8

8

8

2

2

2

2

8

8

8

8

8

8

4

4

8

8

8

8

4

4

4

4

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

(a) maximum of four workstations (b) maximum of eight workstations

2562 5122 7682 10242 12802 15362 17922 20482

13
2

19
2

25
2

31
2

37
2

43
2

49
2

55
2

Image Size

K
er

ne
l S

iz
e

2562 5122 7682 10242 12802 15362 17922 20482

13
2

19
2

25
2

31
2

37
2

43
2

49
2

55
2

Image Size

K
er

ne
l S

iz
e

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

8

32

32

32

32

32

32

32

8

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

2

16

16

16

16

16

16

16

16

16

16

16

16

16

16

4

4

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

8

16

16

16

16

16

16

8

8

(c) maximum of sixteen workstations (d) maximum of thirty-two workstations
Figure 6 - Use of the performance stub for a range of problem and system sizes.

5 Summary

In this work we have shown how a novel performance prediction system may be
applied for on-the-fly performance prediction to steer the execution of applications.
The PACE system enables a performance stub to be incorporated into an application
executable and can be used in a decision making procedure to determine application
system parameters. Accurate predictions can be produced, and rapid evaluation of the
performance models enables on-the-fly use.

An example compact application of convolution was used to illustrate the approach.
This showed the decision making procedures for determining the code to be used and

also its mapping on to the target platform of a workstation cluster. The PACE system
is currently being extended to include dynamic loading effects, and also allow the
mapping of applications onto heterogeneous processing systems.

Acknowledgements

This work is funded in part by DARPA contract N66001-97-C-8530, awarded under
the Performance Technology Initiative administered by NOSC, and by EPSRC grant
GR/L13025.

References

1. D.A. Agard, Y. Hiraoka, P. Shaw, J.W. Sedat, Fluorescence Micrroscopy in Three
Dimensions, in Fluorescence Microscopy of Living Cells in Culture, Elsevier, pp. 353-377,
1989

2. J.N.C. Arabe, A.B.B. Lowekamp, E. Saligman, M.Starkey, and P. Stephan, Dome Parallel
programming environment in a heterogeneous multi-user environment, Supercomputing,
1995.

3. J. Gehring, A. Reinefeld, MARS - A framework for minizing the job execution time in a
metacomputing environment, Future Generation Computer Systems, vol. 12, pp. 87-99,
1996

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM - Parallel
Virtual Machine, MIT Press., 1994

5. M.W. Hall, J.M. Anderson, et.al, Maximizing Multiprocessor Performance with the SUIF
Compiler, IEEE Computer, Vol. 29 (12), December 1996

6. D.J. Kerbyson, E. Papaefstathiou, J.S. Harper, S.C. Perry, G.R. Nudd, Is Predictive Tracing
Too Late for HPC Users?, in High Performance Computing, R.J. Allan, A. Simpson, D. A.
Nicole (Eds), Plenum Press, 1998.

7. E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, T.J. Atherton, An overview of the CHIP3S
Performance Prediction Toolset for Parallel Systems, in Proc of 8th ISCA Int. Conf. on
Parallel and Distributed Computing Systems, pp. 527-533, Orlando, 1995.

8. E. Papaefstathiou, D. J. Kerbyson, G.R. Nudd, A Layered approach to Parallel Software
Performance Prediction: A Case Study, in: L. Dekker, W. Smit, and J.C. Zuidervaart, eds.,
Massively Parallel Processing Applications & Development, pp. 617-624, North-Holland,
1994.

9. B. Quin, H.A. Scholl, R.A. Ammar, Micro Time Cosrt Analysis of Parallel Computation,
IEEE Trans. on Computers, Vol. 40 (5), pp. 613-628, 1991.

10. R. Wolski, Dynamically Forecasting Network Performance Using the Network Weather
Service, UCSD Technical Report, TR-CS96-494, 1996.

